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Abstract: In this work the velocity, acceleration, and jerk analyses of a
two-degrees-of-freedom parallel wrist are approached by means of the theory of screws.
For the sake of completeness, the finite kinematics of the manipulator is also investigated.
As far as the authors are aware, the equation of jerk in screw form of the robot at hand
is introduced by the first time in this contribution. In order to exemplify the method, a
case study is included. The numerical example is verified with the aid of commercially
available software.
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1. Introduction

Usually a spherical mechanism is a limited-dof parallel manipulator that has the virtue that all its
moving points describe paths forming concentric spherical surfaces. The most investigated parallel
manipulator possessing such property is the named Agile Eye [1]. A two-degrees-of-freedom (2-dof)
parallel wrist is a limited-dof spherical parallel manipulator capable to orient a line in the space allowing
interesting applications in antennas, telescopes, biomechanics, telesurgery, haptic devices (joysticks),
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car gearshift, cameras and so far. Carricato and Parenti-Castelli [2] introduced a novel pointing fully
decoupled 2-dof parallel wrist with linear actuators. Vertechy and Parenti-Castelli [3] investigated 2-dof
spherical parallel manipulators equipped with linear actuators. A new fully decoupled 2-dof wrist named
Hemisphere was proposed by Li et al. [4]. Ueda et al. [5] introduced a novel 2-dof parallel wrist with the
purpose to work with heavy loads. Li et al. [6] proposed a redundantly actuated parallel wrist to realize
two degrees of freedom. None of the contributions cited in this paragraph considered the jerk analysis.

The jerk is the time rate of the acceleration and has a direct connection with the forces and moments
generated in multi body systems, e.g., it is known that there is a direct relationship between the jerk
and human movements [7–10]. Gielen et al. [11] noted that the charactecteristic pattern of cerebellar
ataxia, related with the jerk and submovements, is contained in the trajectory of the hand during repeated
arm movements. In that concern, as it was concluded by Carricato and Parenti-Castelli [2] a 2-dof wrist
is a viable option for the development of prosthesis design and humanoid robotics because the relative
motion between two adjacent human segments may be regarded in most cases as a pure rotation. The
jerk analysis is also useful to elucidate the singularities of mechanisms, e.g., Sparis and Mouroutsos [12]
applied the jerk analysis in order to improve and control the position analysis of planar mechanisms,
when the mechanism is near at a singular configuration. As noted by Dolgui and Pashkevich [13],
by means of explicit verification of the velocity/acceleration constraints in wrist robots it is possible
to obtain an optimization technique that allows to perform high-speed robotic laser cutting. Although
in practical machining operations there are some problems concerned with instantaneous changes of
feed rate due to limitations on the servo drive system [14], the generation of smooth trajectories based
on confined contour error, acceleration/deceleration planning (jerk continuity) and machine dynamic
response simultaneously can improve machining operations [15]. On the other hand, to the best
knowledge of the authors, the first contribution approaching the jerk analysis of rigid body by means
of the theory of screws is credited to Rico et al. [16].

In this work the finite kinematics of a 2-dof parallel wrist is reported in closed-form solution
whereas the velocity, acceleration and jerk analyses are approached by means of the theory of screws.
Simple input-output infinitesimal kinematic equations are obtained in the contribution by resorting to
reciprocal-screw theory. The singularities of the spatial mechanism are also briefly explained. In order to
enhance one of the possible applications of the robot at hand it is worth to mention that in an interesting
contribution, Novàk [17] studied the motions of subjects turning a knob and concluded that on many
trials, subjects turned the knob with a single, smooth, and regular motion as indicated by the angular
position and velocity trajectories, but on others cases, subjects produced irregularities in the kinematics,
which were considered as discrete corrective submovements, detecting appreciable inflections in the
acceleration traces. It is reasonable to assume that the jerk would be the responsible of such irregularities
owing the abrupt acceleration changes. In that concern, the parallel wrist considered in the contribution
can be used to measure the jerk analysis of human hand. In fact, the knob may be operated manually
by human and with the aid of encoders the instantaneous motions of the servo motors may be obtained.
Finally, the jerk analysis would be computed by means of the theory of screws.
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2. Preliminary Concepts

The mathematical tool selected to approach the infinitesimal kinematics of the parallel wrist is the
theory of screws [16,18–20]. In order to provide a proper foundation of this work, this section is
devoted to briefly explain some relevant results dealing with the velocity, acceleration and jerk analyses
of kinematic chains by means of screw theory.

Consider an open kinematic chain composed of m rigid bodies serially connected by means of screw
(helical) pairs. The direction of the screw pair, namely the Instantaneous Screw Axis (ISA), that connects
bodies j and j+1 is given by the normalized vector j ŝj+1 while the pitch of the screw is notated as jhj+1.
The pitch and the direction of the screw are entities used to determine the so-called moment part jsj+1

O as

jsj+1
O = jhj+1

j ŝj+1 + τ × j ŝj+1 (1)

where τ is a vector pointed from an arbitrary point embedded to the screw axis to the point O chosen
as the reference pole. After, the screw pair, notated as j$j+1, is a six-dimensional vector given by
j$j+1 =

[
j ŝj+1, jsj+1

O

]T
. For revolute joint we have jhj+1 = 0 yielding j$j+1 =

[
j ŝj+1, τ × j ŝj+1

]T
while in a prismatic joint the pitch jhj+1 goes to infinity yielding j$j+1 =

[
0, j ŝj+1

]T
. Other kinematic

pairs such as cylindrical, spherical or plane pairs may be modeled as a combination of screw pairs.
The velocity state, or twist about a screw, of a rigid body is defined as a six-dimensional vector

given by V O ≡
[
ω, vO

]T
, where ω and vO are the angular and linear velocities of the body in

motion considering O as the reference pole. Meanwhile the reduced acceleration state of a rigid body

is defined as AO ≡
[
α, aO − ω × vO

]T
, where α is the angular acceleration of the body and aO

is the linear acceleration of point O. Furthermore, a representation of the reduced jerk state may be

defined as JO ≡
[
ρ, jO − 2α× vO − ω × aO

]T
, where ρ is the angular jerk of the body whereas jO

is the linear jerk of point O. The velocity, acceleration and reduced jerk states satisfy the conditions of
helicoidal vector fields [21].

Consider a serial chain formed with j, j + 1, . . . ,m − 1,m rigid bodies where adjacent links are
connected by means of screws or helical pairs. The velocity state can be expressed in screw form as

jωj+1
j$j+1 + j+1ωj+2

j+1$j+2 + . . .+ m−1ωm
m−1$m = V O (2)

where ∗ω∗ denotes the joint-velocity rate between adjacent bodies. On the other hand, the reduced
acceleration state may be written as

jαj+1
j$j+1 + j+1αj+2

j+1$j+2 + . . .+ m−1αm
m−1$m +A = AO (3)

where ∗α∗ denotes the joint-acceleration rate between adjacent bodies. Furthermore, the Lie screw of
acceleration A is computed as follows

A =
[
jV j+1

O
j+1V m

O

]
+
[
j+1V j+2

O
j+2V m

O

]
+ . . .+

[
m−2V m−1

O
m−1V m

O

]
(4)

where the brackets [∗ ∗] denote the Lie product of the Lie algebra se(3) of the Euclidean group SE(3).
Finally, the reduced jerk state in screw form is given by

jρj+1
j$j+1 + j+1ρj+2

j+1$j+2 + . . .+ m−1ρm
m−1$m +J = JO (5)
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where ∗ρ∗ denotes the joint-jerk rate between adjacent bodies. Furthermore, the Lie screw of jerk J is
given by

J = 2
[
jV j+1

O
j+1Am

O

]
+ 2

[
j+1V j+2

O
j+2Am

O

]
+ . . .+ 2

[
m−2V m−1

O
m−1Am

O

]
+
[
jAj+1

O
j+1V m

O

]
+
[
j+1Aj+2

O
j+2V m

O

]
+ . . .+

[
m−2Am−1

O
m−1V m

O

]
+
[
jV j+1

O

[
jV j+1

O
j+1V m

O

]]
+
[
j+1V j+2

O

[
j+1V j+2

O
j+2V m

O

]]
+ . . .+

[
m−2V m−1

O

[
m−2V m−1

O
m−1V m

O

]]
(6)

3. Description of the Parallel Wrist

The spherical parallel manipulator at its reference configuration is depicted in Figure 1.

Figure 1. The spherical wrist under study and its geometric scheme.

The spatial mechanism consists of a moving platform (knob) and a fixed platform (base) connected
each other by means of two distinct kinematic chains or limbs, RR and RRR, where the actuators, which
are conveniently mounted on the fixed platform, are indicated with underlines. All the revolute joints
have concentric axes and therefore the linear kinematic properties of pointO vanish. Furthermore, please
note that one primary feature of the wrist at hand is that the axes associated to adjacent revolute joints
are orthogonal. The mobility of the mechanism can be easily explained taking into account that due to
the chosen architecture, the RRR-type limb can be considered as a 3-dof spherical serial manipulator.
However, the connection of the knob through the RR-type limb is such that the knob cannot rotate along
any axis normal to the plane formed by the primal parts of the screws 0$11 and 1$21. Therefore the wrist
at hand losses one of its three degrees of freedom. A robot manipulator like this may be used in the
field of robotic exoskeletons, even though its limited degrees of freedom, e.g., for simulating motions
of human wrist [22]. Furthermore, taking into account that there is a direct relationship between human
movements and jerk, the inclusion of the jerk analysis in the contribution is absolutely justified.
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4. Finite Kinematics

In this section the displacement analysis of the parallel wrist is presented. The forward position
analysis of the parallel wrist is formulated as follows: given the generalized coordinates q1 and q2, see
Figure 1, compute the rotation matrix R of the knob with respect to the base. To this end, consider
XY Z as a reference frame attached to the base whose origin O is instantaneously coincident with the
point of zero linear kinematic properties of the moving knob. For simplicity, significative points of the
mechanism like Q1, Q2, P1, P2, P3 and C are located on a sphere of radius r and center O. Then,
immediately emerges that

P1 = (0,−r sin q1, r cos q1), P3 = (r cos q2, r sin q2, 0) (7)

Furthermore, in order to compute the coordinates of point P2 = (X2, Y2, Z2) the following closure
equations should be taken into account

(p2 − p1) • (p2 − p1) = 2r2, (p2 − p3) • (p2 − p3) = 2r2, p2 • p2 = r2 (8)

where the dot (•) denotes the usual inner product of three-dimensional vectorial algebra and
pi(i = 1, 2, 3) are the position vectors of points Pi(i = 1, 2, 3) expressed in the reference frame XY Z.
After a few computations one obtains

P2 = Y (tan q2,−1,− tan q1) (9)

where Y = r/
√

1 + tan2 q1 + tan2 q2. With regards to the point C of the knob

C = Y (− tan q2, 1, tan q1) (10)

Finally, once the coordinates of point P2 are calculated, the rotation matrix R may be computed based
on the unit vectors p̂i(i = 1, 2, 3) according to [23] as follows

R = [p̂3 − p̂2 p̂1] (11)

On the other hand, the inverse position analysis of the parallel wrist consists of finding the generalized
coordinates q1 and q2 given a prescribed trajectory of the point C of the knob with respect to the base, is
a simple task and it is included here only for the sake of completeness. The inverse position analysis is
immediately solved due to the decoupled motions of the knob. In fact, given C = (CX , CY , CZ), where
evidently C2

X + C2
Y + C2

Z = r2, the generalized coordinates q1 and q2 are obtained as

q1 = arctan(−CY /CZ), q2 = arctan(CX/CZ) (12)

Furthermore, assuming that the orientation of the knob is defined by angles θ and β according to the
fixed reference frame XY Z, see Figure 2, the generalized coordinates q1 and q2 are determined as

q1 = arctan(− tan θ/ sin β), q2 = arctan(cot β) (13)
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Figure 2. Orientation angles of the knob.

5. Infinitesimal Kinematics

In this section the velocity, acceleration, and jerk analyses of the parallel wrist are approached
by means of the theory of screws. The infinitesimal screws representing the kinematic pairs of the
mechanism are depicted in Figure 1.

5.1. Velocity Analysis

The velocity state of the moving platform with respect to the fixed platform, vectorV O, can be written
in screw form through any of the two limbs of the manipulator as follows

q̇i
0$1i + 1ω

i
2
1$2i + 2ω

i
3
2$3i = V O i = 1, 2 (14)

where 2$31 is an auxiliary screw associated to a fictitious revolute joint introduced with the purpose to
satisfy an algebraic requirement, it is evident that 2ω

1
3 = 0.

The inverse velocity analysis (IVA) of the wrist consists of finding the joint-rate velocities of the
manipulator given a prescribed velocity state V O. After reducing terms, the IVA is carried-out directly
from Equation (14). On the other hand, the forward velocity analysis (FVA) of the mechanism consists
of computing the velocity state V O given the generalized velocities q̇1 and q̇2. In what follows, the FVA
is simplified by applying the concept of reciprocal screws. To this end, consider that from Equation (14)
it is possible to write

q̇1
0$11 + 1ω

1
2
1$21 + 2ω

1
3
2$31 − (q̇2

0$12 + 1ω
2
2
1$22 + 2ω

2
3
2$32) = 0 (15)

With reference to Figure 2, the line $∗ =
[
ŝ∗, sO∗

]T
is directed from point P2 to point P3, where

the primal and dual parts, ŝ∗ and sO∗, of the line are given by ŝ∗ = (p3 − p2)/ | p3 − p2 | and
sO∗ = r3 × ŝ∗. Clearly, after reducing terms, the application of the Klein form of the line $∗ to both
sides of Equation (15), yields the passive joint velocity rate 1ω

1
2 . The substitution of 1ω

1
2 into the first

equation of (14) allows to obtain the velocity state V O as follows

V O = q̇1
0$1i −

{(q̇10$11 − q̇20$12); $∗}
{1$21; $∗}

1$21 (16)
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5.2. Acceleration Analysis

The reduced acceleration state of the moving platform with respect to the fixed platform, vector AO,
can be written in screw form through any of the two limbs of the manipulator as follows

q̈i
0$1i + 1α

i
2
1$2i + 2α

i
3
2$3i +Ai = AO i = 1, 2 (17)

where Ai = [q̇i
0$1i 1ω

i
2
1$2i + 2ω

i
3
2$3i ] + [1ω

i
2
1$2i 2ω

i
3
2$3i ].

The inverse acceleration analysis (IAA) of the parallel wrist consists of finding the joint-rate
accelerations of the manipulator given a prescribed reduced acceleration state AO. After reducing
terms, the IAA is carried-out directly from Equation (17). On the other hand, the forward acceleration
analysis (FAA) of the mechanism consists of finding the active-joint-rate accelerations q̈1 and q̈2 given a
prescribed reduced acceleration stateAO. To this aim, from Expressions (17) it follows that

q̈1
0$11 + 1α

1
2
1$21 + 2α

1
3
2$31 +A1 − (q̈2

0$12 + 1α
2
2
1$22 + 2α

2
3
2$32 +A2) = 0 (18)

The application of the Klein form of the line $∗ to both sides of Equation (18) allows to compute the
passive joint acceleration rate 1α

1
2. Substituting this result into the first equation of (17), the reduced

acceleration stateAO is obtained as

AO = q̈i
0$1i −

{(q̈10$11 +A1 − q̈20$12 −A2); $∗}
{1$21; $∗}

1$21 +A1 (19)

5.3. Jerk Analysis

The reduced jerk state of the moving platform with respect to the fixed platform, vector JO, can be
written in screw form through any of the two limbs of the manipulator as follows

˙̈qi
0$1i + 1ρ

i
2
1$2i + 2ρ

i
3
2$3i +J i = JO i = 1, 2 (20)

where

J i = 2
[
q̇i

0$1i 1α
i
2
1$2i + 2α

i
3
2$3i +

[
1ω

i
2
1$2i 2ω

i
3
2$3i

]]
+ 2

[
1ω

i
2
1$2i 2α

i
3
2$3i

]
+
[
q̈i

0$1i 1ω
i
2
1$2i + 2ω

i
3
2$3i

]
+
[
1α

i
2
1$2i 2ω

i
3
2$3i

]
+
[
q̇i

0$1i

[
q̇i

0$1i 1ω
i
2
1$2i + 2ω

i
3
2$3i

]]
+
[
1ω

i
2
1$2i

[
1ω

i
2
1$2i 2ω

i
3
2$3i

]]
(21)

The inverse jerk analysis (IJA) of the mechanism consists of finding the joint-rate jerks of the
manipulator given a prescribed reduced jerk state JO. After reducing terms, the IJA is carried-out
directly from Equation (20). On the other hand, the forward jerk analysis (FJA) of the parallel wrist
consists of finding the reduced jerk state JO for a given set of active- joint-rate jerks ˙̈q1 and ˙̈q2. To this
aim, from Expressions (20) it follows that

˙̈q1
0$11 + 1ρ

1
2
1$21 + 2ρ

1
3
2$31 +J 1 − ( ˙̈q2

0$12 + 1ρ
2
2
1$22 + 2ρ

2
3
2$32 +J 2) = 0 (22)

The application of the Klein form of the line $∗ to both sides of Equation (22) allows to compute the
passive joint jerk rate 1ρ

1
2. Substituting this result into the first Equation of (20), the reduced jerk state

JO is obtained as

JO = ˙̈qi
0$1i −

{( ˙̈q10$11 +J 1 − ˙̈q2
0$12 −J 2); $∗}

{1$21; $∗}
1$21 +J 1 (23)
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Expressions (16), (19) and (23) are simple, linear, compact and as far as the authors are aware were
not derived in screw form in previous works for the robot under study. On the other hand, it is expected
that the dual parts of the velocity, acceleration and jerk states of the parallel wrist vanish due to the
concentric infinitesimal screws.

6. Singularity Analysis

A singularity occurs when the moving platform gains or loses degrees of freedom. Under such
situation at least one of the kinematic analyses of the wrist is indefinite. The first type of singularity to
be analyzed is related with the finite kinematics of the wrist, usually referred as structural singularities.
To this aim, please note that according to Y , the forward position analysis is indefinite if 1 + tan2 q1 +

tan2 q2 ≤ 0. Of course it is an unrealistic possibility and must be disregarded immediately from the
analysis, in other words, the parallel wrist is free of structural singularities concerned with the forward
displacement analysis. On the other hand, an input-output position equation of the wrist may be written
as follows

P = Rp (24)

where P are the coordinates of a point of the knob expressed in the reference frame XY Z, p are the
coordinates of the same point but expressed in a moving reference frame attached to the knob and R is
the rotation matrix given in Equation (11). It is straightforward to show that the inverse position analysis
is indefinite when det(R) vanishes. Therefore, this singularity occurs when

(cos2 q2 cos
2 q1 − cos2 q1 − cos2 q2) cos q2 cos q1 = 0 (25)

After, the corresponding singular surface is given in Figure 3.

Figure 3. Finite kinematics. Inverse singular surface in loci form.

The second type of singularity is related with the infinitesimal kinematics of the wrist. To this end, a
linear combination of the screws in the same limb may be written as

λ1i
0$1i + λ2i

1$2i + λ3i
2$3i = 0 (26)
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In the inverse velocity analysis, a singularity is present when the screws in Expression (26) are linearly
dependent. Due to the physical orthogonality imposed to adjacent revolute joints in the same limb, none
of the screws in Equation (26) can be obtained as a linear combination of the remaining screws, therefore
the wrist is free of this type of singularity. Finally, please note that according to Equation (16), the
forward velocity analysis is indefinite when {1$21; $∗} = 0, in other words when the screws 1$21 and $∗

are reciprocal, this singularity is present when both screws intersect and the equation governing such
situation, considering that r 6= 0, results in

sin q1 cos q2 tan q1 = 0 (27)

7. Results and Discussion

In this section a numerical example is provided in order to show the application of the
method of kinematic analysis. To this end, the parameters of the wrist are given as follows: r = 0.1,
Q1 = (−0.1, 0, 0) and Q2 = (0, 0,−0.1), where SI units are used through the exercise.

The first part of the case study is concerned with the inverse position analysis. To this aim, consider
that the orientation angles θ and β are commanded to follow periodical functions given by

θ =
π

6
+ 2 sin(1.5t) sin(t) cos3(t), β =

π

4
+

1

2
sin2(t) cos(t) (28)

where the time t is chosen in the interval 0 ≤ t ≤ 2π. After, the resulting instantaneous generalized
coordinates meeting such conditions, given as simple plots, are provided in Figure 4.

Figure 4. Inverse position analysis. Temporal behavior of the instantaneous
generalized coordinates.

The next part of the numerical example consists of computing the angular velocity and acceleration
of the knob as measured from the base link taking into account that the generalized coordinates q1 and
q2 of the robot must follow periodical functions given by

q1 =
π

2
sin2(t), q2 =

π

2
sin(t) cos(t) 0 ≤ t ≤ 2π (29)

To this aim, the method reported in the contribution was translated into a Maple16 c©sheet.
Afterwards, the resulting temporal behavior of the angular velocity and acceleration of the knob is given
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in Figure 5. Furthermore, in order to verify the numerical results obtained by employing the theory of
screws, simulations were carried out by means of special software like ADAMS c©. The corresponding
plots are given in Figure 5.
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Figure 5. Time history of the angular velocity and acceleration of the knob as measured from
the base using screw theory, upper plots, and its validation using ADAMS c©, lower plots.

It is worth to note that the numerical results obtained by employing the theory of screws are in
excellent agreement with those generated by using a different strategy such is the use of commercially
available software. On the other hand, the temporal behavior of the angular jerk of the knob with respect
to the base computed via screw theory is given in Figure 6. It is worth to write that the jerk analysis of
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mechanical systems is not available in ADAMS c©. Thus, as it was suggested by one of the reviewers,
the jerk analysis was verified by numerically differentiating the result of the acceleration analysis. The
corresponding plots are shown in Figure 6.

Figure 6. Time history of the angular jerk of the knob as measured from the base using
screw theory, upper plots, and its validation using an hybrid algorithm, lower plots.

8. Conclusions

In this work the kinematics up to the jerk analysis of a 2-dof parallel wrist is approached by means
of the theory of screws. Simple and compact expressions to solve the velocity, acceleration and jerk
analyses of the parallel wrist at hand are systematically obtained by taking advantage of the properties of
reciprocal screws via the Klein form of the Lie algebra se(3) of the Euclidean group SE(3). Particularly,
as far as the authors are aware, the jerk analysis in screw form of the parallel wrist under study has not
been reported in previous works.

In order to show the application of the method a case study covering most of the topics treated in
the contribution was included. Furthermore, the results of the velocity and acceleration analyses of the
example were verified with the aid of commercially available software like ADAMS c©.

Finally, the higher-order kinematic analyses of robot manipulators is more than an academic pursuit,
e.g., it would be really usefully taking into account that human, automation and robot machines must
collaborate in integrated systems [24].
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